Phosphorylation of Nicastrin by SGK1 Leads to Its Degradation through Lysosomal and Proteasomal Pathways
نویسندگان
چکیده
The gamma-secretase complex is involved in the intramembranous proteolysis of a variety of substrates, including the amyloid precursor protein and the Notch receptor. Nicastrin (NCT) is an essential component of the gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we determined that serum- and glucocorticoid-induced protein kinase 1 (SGK1) markedly reduced the protein stability of NCT. The SGK1 kinase activity was decisive for NCT degradation and endogenous SGK1 inhibited gamma-secretase activity. SGK1 downregulates NCT protein levels via proteasomal and lysosomal pathways. Furthermore, SGK1 directly bound to and phosphorylated NCT on Ser437, thereby promoting protein degradation. Collectively, our findings indicate that SGK1 is a gamma-secretase regulator presumably effective through phosphorylation and degradation of NCT.
منابع مشابه
Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase.
Notch is a transmembrane protein that acts as a transcriptional factor in the Notch signaling pathway for cell survival, cell death and cell differentiation. Notch1 and Fbw7 mutations both lead the activation of the Notch1 pathway and are found in the majority of patients with the leukemia T-ALL. However, little is known about the mechanisms and regulators that are responsible for attenuating t...
متن کاملImmature and mature species of the human Prostacyclin Receptor are ubiquitinated and targeted to the 26S proteasomal or lysosomal degradation pathways, respectively
BACKGROUND The human prostacyclin receptor (hIP) undergoes agonist-induced phosphorylation, desensitisation and internalisation and may be recycled to the plasma membrane or targeted for degradation by, as yet, unknown mechanism(s). RESULTS Herein it was sought to investigate the turnover of the hIP under basal conditions and in response to cicaprost stimulation. It was established that the h...
متن کاملActivation of SGK1 by HGF, Rac1 and integrin-mediated cell adhesion in MDCK cells: PI-3K-dependent and -independent pathways.
The SGK1 protein belongs to the AGC gene family of kinases that are regulated by phosphorylation mediated by PDK1. SGK1 regulation is accomplished by several pathways including growth-factor and stress-mediated signaling. We have expanded the analysis of SGK1 regulation in epithelial cells. We used HA-tagged SGK1 to transiently transfect MDCK cells and study the regulation of SGK1 upon stimulat...
متن کاملAβ42-mediated proteasome inhibition and associated tau pathology in hippocampus are governed by a lysosomal response involving cathepsin B: Evidence for protective crosstalk between protein clearance pathways
Impaired protein clearance likely increases the risk of protein accumulation disorders including Alzheimer's disease (AD). Protein degradation through the proteasome pathway decreases with age and in AD brains, and the Aβ42 peptide has been shown to impair proteasome function in cultured cells and in a cell-free model. Here, Aβ42 was studied in brain tissue to measure changes in protein clearan...
متن کاملUbiquitin-dependent proteasomal degradation of human liver cytochrome P450 2E1: identification of sites targeted for phosphorylation and ubiquitination.
Human liver CYP2E1 is a monotopic, endoplasmic reticulum-anchored cytochrome P450 responsible for the biotransformation of clinically relevant drugs, low molecular weight xenobiotics, carcinogens, and endogenous ketones. CYP2E1 substrate complexation converts it into a stable slow-turnover species degraded largely via autophagic lysosomal degradation. Substrate decomplexation/withdrawal results...
متن کامل